GA-Based Multi-Objective Optimization of Finance-Based Construction Project Scheduling
نویسندگان
چکیده
From a financial management perspective, the profitability of a construction project is connected to the cash requirements of the project and the ability of a company to procure cash at the right time. Line of credit as a bank credit agreement provides an alternative way of managing the necessary capital and cash flow for the project. Today’s highly competitive business environment necessitates comprehensive scheduling with respect to cash providing provisions and restrictions. This paper presents a multi-objective elitist Non-dominated Sorting Genetic Algorithm (NSGA-II) based optimization model for finance-based scheduling which facilitates the decision making process of the most appropriate line of credit option for cash procurement. Finance-based scheduling modifies the initial schedule of the project so that its maximum negative cash flow is limited to a specific credit limit. Furthermore, this paper suggests several improvements to basic NSGA-II and demonstrates how they significantly enhance the efficiency of the model in searching for non-dominated solutions. The proposed model is validated by a designed benchmark problem, and its performance and merits are illustrated through its application to a case example. It is shown that the model can effectively approach to the optimal Pareto set and maintain diversity in solutions.
منابع مشابه
A Multi-Mode Resource-Constrained Optimization of Time-Cost Trade-off Problems in Project Scheduling Using a Genetic Algorithm
In this paper, we present a genetic algorithm (GA) for optimization of a multi-mode resource constrained time cost trade off (MRCTCT) problem. The proposed GA, each activity has several operational modes and each mode identifies a possible executive time and cost of the activity. Beyond earlier studies on time-cost trade-off problem, in MRCTCT problem, resource requirements of each execution mo...
متن کاملOptimization of an energy based bi-objective multi skilled resource investment project scheduling problem
Growing concern in the management of energy due to the increasing energy costs, has forced managers to optimize the amount of energy required to provide products and services. This research integrates an energy-based resource investment project-scheduling problem (RIP) under a multi-skilled structure of the resources. The proposed energy based multi skilled resource investment problem (EB-MSRIP...
متن کاملMulti-objective optimization of time-cost-quality-carbon dioxide emission-plan robustness in construction projects
Today, the construction industry is facing intense competition and success in this competition depends on several factors. Project managers try to minimize project time and cost, carbon dioxide emission and at the same time maximizing the quality of project and its plan robustness. In this paper, study construction project scheduling considering a discrete trade-off between time, cost, quality,...
متن کاملA Multi-objective optimization model for project scheduling with time-varying resource requirements and capacities
Proper and realistic scheduling is an important factor of success for every project. In reality, project scheduling often involves several objectives that must be realized simultaneously, and faces numerous uncertainties that may undermine the integrity of the devised schedule. Thus, the manner of dealing with such uncertainties is of particular importance for effective planning. A realistic sc...
متن کاملAn Efficient Genetic Agorithm for Solving the Multi-Mode Resource-Constrained Project Scheduling Problem Based on Random Key Representation
In this paper, a new genetic algorithm (GA) is presented for solving the multi-mode resource-constrained project scheduling problem (MRCPSP) with minimization of project makespan as the objective subject to resource and precedence constraints. A random key and the related mode list (ML) representation scheme are used as encoding schemes and the multi-mode serial schedule generation scheme (MSSG...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010